174 research outputs found

    Colouring exact distance graphs of chordal graphs

    Full text link
    For a graph G=(V,E)G=(V,E) and positive integer pp, the exact distance-pp graph G[p]G^{[\natural p]} is the graph with vertex set VV and with an edge between vertices xx and yy if and only if xx and yy have distance pp. Recently, there has been an effort to obtain bounds on the chromatic number χ(G[p])\chi(G^{[\natural p]}) of exact distance-pp graphs for GG from certain classes of graphs. In particular, if a graph GG has tree-width tt, it has been shown that χ(G[p])O(pt1)\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t-1}) for odd pp, and χ(G[p])O(ptΔ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t}\Delta(G)) for even pp. We show that if GG is chordal and has tree-width tt, then χ(G[p])O(pt2)\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2) for odd pp, and χ(G[p])O(pt2Δ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2 \Delta(G)) for even pp. If we could show that for every graph HH of tree-width tt there is a chordal graph GG of tree-width tt which contains HH as an isometric subgraph (i.e., a distance preserving subgraph), then our results would extend to all graphs of tree-width tt. While we cannot do this, we show that for every graph HH of genus gg there is a graph GG which is a triangulation of genus gg and contains HH as an isometric subgraph.Comment: 11 pages, 2 figures. Versions 2 and 3 include minor changes, which arise from reviewers' comment

    Clique immersions in graphs of independence number two with certain forbidden subgraphs

    Full text link
    The Lescure-Meyniel conjecture is the analogue of Hadwiger's conjecture for the immersion order. It states that every graph GG contains the complete graph Kχ(G)K_{\chi(G)} as an immersion, and like its minor-order counterpart it is open even for graphs with independence number 2. We show that every graph GG with independence number α(G)2\alpha(G)\ge 2 and no hole of length between 44 and 2α(G)2\alpha(G) satisfies this conjecture. In particular, every C4C_4-free graph GG with α(G)=2\alpha(G)= 2 satisfies the Lescure-Meyniel conjecture. We give another generalisation of this corollary, as follows. Let GG and HH be graphs with independence number at most 2, such that V(H)4|V(H)|\le 4. If GG is HH-free, then GG satisfies the Lescure-Meyniel conjecture.Comment: 14 pages, 3 figures. The statements of lemmas 3.1, 4.1, and 4.2 are slightly changed from the previous version in order to fix some minor errors in the proofs of theorems 3.2 and 4.3. Shorter proof of Proposition 5.2 give

    Quadratic Dynamical Decoupling with Non-Uniform Error Suppression

    Full text link
    We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes, comprising N1 and N2 pulses, respectively. Varying these numbers, we study the decoherence suppression properties of QDD directly by isolating the errors associated with each system basis operator present in the system-bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore immediately yielding the order of decoherence suppression. We show that the error suppression properties of QDD are dependent upon the parities of N1 and N2, and near-optimal performance is achieved for general single-qubit interactions when N1=N2.Comment: 17 pages, 22 figure

    Chromatic and structural properties of sparse graph classes

    Get PDF
    A graph is a mathematical structure consisting of a set of objects, which we call vertices, and links between pairs of objects, which we call edges. Graphs are used to model many problems arising in areas such as physics, sociology, and computer science. It is partially because of the simplicity of the definition of a graph that the concept can be so widely used. Nevertheless, when applied to a particular task, it is not always necessary to study graphs in all their generality, and it can be convenient to studying them from a restricted point of view. Restriction can come from requiring graphs to be embeddable in a particular surface, to admit certain types of decompositions, or by forbidding some substructure. A collection of graphs satisfying a fixed restriction forms a class of graphs. Many important classes of graphs satisfy that graphs belonging to it cannot have many edges in comparison with the number of vertices. Such is the case of classes with an upper bound on the maximum degree, and of classes excluding a fixed minor. Recently, the notion of classes with bounded expansion was introduced by Neˇsetˇril and Ossona de Mendez [62], as a generalisation of many important types of sparse classes. In this thesis we study chromatic and structural properties of classes with bounded expansion. We say a graph is k-degenerate if each of its subgraphs has a vertex of degree at most k. The degeneracy is thus a measure of the density of a graph. This notion has been generalised with the introduction, by Kierstead and Yang [47], of the generalised colouring numbers. These parameters have found applications in many areas of Graph Theory, including a characterisation of classes with bounded expansion. One of the main results of this thesis is a series of upper bounds on the generalised colouring numbers, for different sparse classes of graphs, such as classes excluding a fixed complete minor, classes with bounded genus and classes with bounded tree-width. We also study the following problem: for a fixed positive integer p, how many colours do we need to colour a given graph in such a way that vertices at distance exactly p get different colours? When considering classes with bounded expansion, we improve dramatically on the previously known upper bounds for the number of colours needed. Finally, we introduce a notion of addition of graph classes, and show various cases in which sparse classes can be summed so as to obtain another sparse class

    High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling

    Full text link
    We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.Comment: 5 pages, 4 figure

    Universal arrays

    Full text link
    A word on qq symbols is a sequence of letters from a fixed alphabet of size qq. For an integer k1k\ge 1, we say that a word ww is kk-universal if, given an arbitrary word of length kk, one can obtain it by removing entries from ww. It is easily seen that the minimum length of a kk-universal word on qq symbols is exactly qkqk. We prove that almost every word of size (1+o(1))cqk(1+o(1))c_qk is kk-universal with high probability, where cqc_q is an explicit constant whose value is roughly qlogqq\log q. Moreover, we show that the kk-universality property for uniformly chosen words exhibits a sharp threshold. Finally, by extending techniques of Alon [Geometric and Functional Analysis 27 (2017), no. 1, 1--32], we give asymptotically tight bounds for every higher dimensional analogue of this problem.Comment: 12 page

    Chromatic numbers of exact distance graphs

    Get PDF
    For any graph G = (V;E) and positive integer p, the exact distance-p graph G[\p] is the graph with vertex set V , which has an edge between vertices x and y if and only if x and y have distance p in G. For odd p, Nešetřil and Ossona de Mendez proved that for any fixed graph class with bounded expansion, the chromatic number of G[\p] is bounded by an absolute constant. Using the notion of generalised colouring numbers, we give a much simpler proof for the result of Nešetřil and Ossona de Mendez, which at the same time gives significantly better bounds. In particular, we show that for any graph G and odd positive integer p, the chromatic number of G[\p] is bounded by the weak (2

    Characterizing and recognizing exact-distance squares of graphs

    Full text link
    For a graph G=(V,E)G=(V,E), its exact-distance square, G[2]G^{[\sharp 2]}, is the graph with vertex set VV and with an edge between vertices xx and yy if and only if xx and yy have distance (exactly) 22 in GG. The graph GG is an exact-distance square root of G[2]G^{[\sharp 2]}. We give a characterization of graphs having an exact-distance square root, our characterization easily leading to a polynomial-time recognition algorithm. We show that it is NP-complete to recognize graphs with a bipartite exact-distance square root. These two results strongly contrast known results on (usual) graph squares. We then characterize graphs having a tree as an exact-distance square root, and from this obtain a polynomial-time recognition algorithm for these graphs. Finally, we show that, unlike for usual square roots, a graph might have (arbitrarily many) non-isomorphic exact-distance square roots which are trees.Comment: 15 pages, 6 figure

    Balanced-chromatic number and Hadwiger-like conjectures

    Full text link
    Motivated by different characterizations of planar graphs and the 4-Color Theorem, several structural results concerning graphs of high chromatic number have been obtained. Toward strengthening some of these results, we consider the \emph{balanced chromatic number}, χb(G^)\chi_b(\hat{G}), of a signed graph G^\hat{G}. This is the minimum number of parts into which the vertices of a signed graph can be partitioned so that none of the parts induces a negative cycle. This extends the notion of the chromatic number of a graph since χ(G)=χb(G~)\chi(G)=\chi_b(\tilde{G}), where G~\tilde{G} denotes the signed graph obtained from~GG by replacing each edge with a pair of (parallel) positive and negative edges. We introduce a signed version of Hadwiger's conjecture as follows. Conjecture: If a signed graph G^\hat{G} has no negative loop and no Kt~\tilde{K_t}-minor, then its balanced chromatic number is at most t1t-1. We prove that this conjecture is, in fact, equivalent to Hadwiger's conjecture and show its relation to the Odd Hadwiger Conjecture. Motivated by these results, we also consider the relation between subdivisions and balanced chromatic number. We prove that if (G,σ)(G, \sigma) has no negative loop and no Kt~\tilde{K_t}-subdivision, then it admits a balanced 792t2\frac{79}{2}t^2-coloring. This qualitatively generalizes a result of Kawarabayashi (2013) on totally odd subdivisions
    corecore